CHAPTER 15

THE NEW GEOGRAPHY IN THE UNITED STATES BEFORE WORLD WAR I

Reputations for originality are more often made by giving names to ideas already coming into circulation than by inventing new ideas. In this way the fruits of many men’s thinking are appropriated by the more lucid and articulate among them.

When the “new geography” arrived in North America following its appearance in Germany, an interest in geographical studies and in the teaching of geography in schools and colleges had already been demonstrated (Aay, 1981; Warnitz, 1981). As in other parts of the world, geographical work was contributed by scholars (e.g., Benjamin Franklin and Thomas Jefferson) for whom such studies constituted only one of many intellectual interests. There were pioneers, such as Jedidiah Morse, George Perkins Marsh, and Matthew Fontaine Maury, who brought new understanding to the study of the earth as the home of humankind. There were also the endogenous ideas, which to some extent were the product of the wilderness-conquest experience. In addition, there were exogenous ideas imported from Europe and brought to the United States by geographers including Ritter, Humboldt, Kapp, Kohl, Reclus, and Schaffer. Correspondence between American geologists, geomorphologists, and cryptogeographers and European geographers developed. European books and periodicals were imported, and U.S. and European geographers met at the International Geographical Congresses. European geographical ideas were also brought to America by such scholars as Louis Agassiz at Harvard and Arnold Guyot at Princeton. Guyot’s pupil, William Libbey, Jr., who succeeded Guyot as professor of physical geography at Princeton, carried on the tradition of individual scholarship in his studies of oceanography, especially the relationship between the Gulf Stream and the Labrador Current. During the nineteenth century, too, major advances in thematic mapping were introduced from Europe through the efforts of such men as Lovin Bogue, Joseph C. G. Kennedy, Daniel Coit Gilman, and Francis A. Walker.

An important part of the background for the development of the new geography in America was the tradition of the field survey and the resulting emphasis on induction from observations rather than deduction from theory. In the 1880s the Great Surveys of the West had just been combined in the U.S. Geological Survey. [For geographers at work in the federal government, see Fries (1981); for Amer-Indian antecedents, see Lewis (1981).] The men who worked on these surveys had not received previous training in the concepts and methods of geography, and they had to find their own answers to the five questions listed at the beginning of Chapter 7 (what to observe, how to observe, to observe, to generalize, and to communicate). Since these field men had not been indoctrinated with Lyell’s ideas about marine planation or Werner’s ideas about the origin of the earth, they were able to observe landforms and the processes that produced them without strong preconceptions. There was a practical motivation for their work. They disdained theory and the findings of scholars that had been deduced from theory. Grove Karl Gilbert wrote: “In the testing of hypotheses lies the prime difference between the investigator and theorist. The one seeks diligently for the facts which may overthrow his tentative theory, the other closes his eyes to these and searches only for those which will sustain it” (Gilbert, 1880).

By 1880 the stage was set for the appearance of what we have called the new geography. As we have seen in Chapters 7 and 8, the formation of a professional field requires the existence of clusters of scholars working closely with graduate students in universities (Koehrs, 1981). The concept of the university as a community of scholars first appeared in America in 1876 when Daniel Coit Gilman became president of the newly founded Johns Hopkins University; thereafter, the idea spread rapidly to other established universities. For the first time faculties qualified by advanced training and continued activity in research were selected to guide the training of younger generations. For the first time a professional group could lead and direct scholarly performance in each discipline, free from external interference.

Geographers began to participate in this new kind of university in Germany in 1874, and thereby the innovation spread around the world. The pioneer who introduced the new geography in America was the geologist William Morris Davis, who had been appointed instructor of physical geogra-
WILLIAM MORRIS DAVIS

William Morris Davis spent the greater part of his professional career as a professor of geology at Harvard University. He was one of the founders of modern scientific geology in the United States. Davis was born in Cincinnati, Ohio, in 1856, and received his education at Harvard University, where he received his B.A. degree in 1878. He later went on to receive his M.A. and Ph.D. degrees from the same institution. Davis was a member of the American Association for the Advancement of Science and the Geological Society of America. He was also a fellow in the American Philosophical Society. Davis was elected to the National Academy of Sciences in 1882 and to the American Academy of Arts and Sciences in 1893. He was the author of numerous scientific papers and books on geology. Davis died on March 18, 1934, in Cambridge, Massachusetts.
At this point another member of the Harvard faculty in geology, Ralph B. Dusinberre, who knew Davis as a student, offered him a position in the survey of Montana. Davis accepted the position and began his work in 1875. He had the opportunity to work on the geology of Montana, including the study of the coal measures. He continued his research on the concept of the "cycle of erosion." He noted the existence of a "cycle of erosion" and the importance of understanding the geologic history of a region. He also developed a new method of the "process of erosion." He was one of the first to use the concept of the "cycle of erosion."

Shaler also transmitted to Davis a vision of the earth as the source of all organic evolution. Shaler was the first scholar to recognize the importance of the influence of environmental conditions on the evolution of life. He was also the first to recognize the importance of the concept of "process of erosion." He was one of the first to recognize the importance of the concept of "process of erosion." He was one of the first to recognize the importance of the concept of "process of erosion." He was one of the first to recognize the importance of the concept of "process of erosion."
Not all did evil provide reason for the success of his cycle, but he also
suggested that the terms for the various forms of landform be with an exact
definition, and that the terms for the different periods of time be
translated into English. He adopted Paccini's three-fold classification of
different types of landforms, essentially the same as that used by
Darwin, and he maintained that the terms for the different periods of
time could be used to describe the development of landforms through
time. This is an interesting principle, and it seems to be closely related to
correlational concepts.

As was noted, the cycle of erosion was not totally understood or
translated into English. The only complete translation of the cycle of
erosion was made by Alfred Russel Wallace, who translated Darwin's
work into English.

In this regard, the cycle of erosion seems to be more fully understood
than the cycle of evolution. However, while the cycle of erosion was
understood, the cycle of evolution was not fully understood.

In conclusion, the cycle of erosion provides a useful framework for
understanding the development of landforms.

[Further discussion on the cycle of erosion and its implications for
understanding landforms.]
Davis also proposed that the student of geography could improve the quality of his work by examining the literature of both the past and the present. He believed that the study of the past could provide valuable insights into the present and the future, and that the study of the present could provide valuable insights into the past. He also argued that the study of the past could provide valuable insights into the future, and that the study of the present could provide valuable insights into the past. He also argued that the study of the past could provide valuable insights into the future, and that the study of the present could provide valuable insights into the past.
planning the sequenhes of events that produced contemporary landscapes.

But with his students he was sharply critical of inferior performance and discouraged many of his more sensitive students from further work in geography. Only the best students could "take it." Mark Jefferson, one of Davis's most effective disciples, had this to say about the master's teaching:

Davis' teaching was the most interesting thing I ever met. Confronted with the word of wise men his formulas proved up. I took all his courses at Harvard, a summer school with him and two other students in the Rocky Mountains. . . .

The more you checked his teaching against the out-of-doors the smarter you found it. But he was not always easy to take. He was a school of intellectual hard knocks (Martin, 1968:43).

WHAT DAVIS STARTED

We must give Davis credit for his tireless devotion to the advancement of what he thought of as geography. His students were among the outstanding geonomorphologists and climato-geographers of the early twentieth century.8

8There were six outstanding graduate students at Harvard with Storer and Davis in 1899-1904: Albert T. Bailey, who became a professor at the University of Illinois; David P. Bassett, who became a professor at the University of California; Hugh W. Northrop, who became a professor at the University of Chicago; F. W. Putnam, who became a professor at the University of Minnesota; F. H. Baker, who became a professor at the University of Wisconsin; and W. H. Stiles, who became a professor at the University of Minnesota.

Figure 25. A landscape sketch by W. M. Davis: "Looking northward down the normal early-spring valley of Tribuna Creek." (From Davis, 1911:55. Reprinted by permission of the Association of American Geographers.)
(Brigham, 1924). He said that the study of geography could lead to no professional career outside of schoolteaching and that there were few opportu-
nities in the universities. There was no organized body of mature scholars in
geography and, therefore, no opportunity for the mutual encouragement that
comes from professional fellowship. He proposed that geographers should
organize a professional society similar to the Geological Society of
America, "with criteria of expert training and ample publication as a basis for
membership." He went on to point out where a nucleus of members could be
found among teachers of geography, members of national or state weather
services, members of many government agencies dealing with geology, hy-
drography, biology, ethnography, or statistical studies. During the following
months of 1904, A. P. Brigham called a group of interested people together,
and from this meeting there emerged a plan for organizing such a society.

The first meeting and the act of incorporation took place in Philadelphia
in December 1904. Davis, as president, spoke about the objectives and
opportunities for the new association (Davis, 1905). He was reelected presi-
dent for 1905 (and for a third term in that office in 1909). It was at the 1905
meeting of the association that he gave his presidential address, "An In-
vestigative Study of the Content of Geography" (Davis, 1906), in which he identified
geography as the study of the relationship between inorganic controls and
organic responses.

Another of Davis's accomplishments in behalf of the profession was his
organization of international field excursions. In 1911 Davis organized "the
Liverpool-Rome Pilgrimage." The pilgrims numbered 32 and were drawn from
14 different countries. It constituted a form of traveling seminar: much was
learned and shared, and friendships were formed. In the following year Davis
lectured at the Sorbonne, and from there arranged the 1912 Transcon-
tinental Excursion of the American Geographical Society. As a result of this
success in the previous year, Davis was able to secure financial help from
Arnherg Huntington (one of the large unseen benefactors of American
gography), and the cooperation of railroads, universities, chambers of com-
merce, university clubs, newspapers, scientific societies, government agen-
cies, and business organizations across the United States. The excursion
included 45 European geographers from 13 different countries (see photo-
graph of some of the participants). About 100 American geographers accom-
panied the Europeans for at least part of the excursion. The party left New
York on August 22 on a train hired especially for the purpose and returned
to New York on October 17, after covering 12,965 miles from coast to coast.
Many professional papers were written on the basis of notes made during the
excursion and published in many languages; but the greatest benefit was
derived from the close personal friendships that developed among leaders of
the geographic profession in the United States and Europe and from numer-
ous unburied professional discussions that were carried on. There has never
been anything quite like this excursion.11

GEOGRAPHY IN THE EARLY TWENTIETH CENTURY

During the early years of the twentieth century, the movement to introduce a
professionally acceptable kind of geography into schools, colleges, and uni-
versities gradually gathered strength. At the end of the nineteenth century,
there were only five professors of geography in American universities: Davis
at Harvard, Ralph S. Tarr at Cornell, William Libbey, Jr., the successor to
Gayot, at Princeton, George Davidson at the University of California (Berke-
ley), and Richard E. Dodge at Teachers College, Columbia University. Many
teachers' colleges around the country offered courses in geography, but only

11See the Memorial Volume of the Transcontinental Excursion of 1912 of the American Geographic
The excursion was made possible by a substantial gift from Archer M. Huntington.
geography not only because of the enthusiasm kindled in his students, but also because its popularity grew to the point that it was recognized as a separate and distinct field of study. As a result, the study of geography was no longer confined to the margins of other disciplines but was recognized as a discipline in its own right.

During this period, geography was taught in various forms in American universities and colleges. The curriculum varied from institution to institution, but it generally included topics such as physical geography, economic geography, political geography, and human geography. The focus was on teaching students how to use maps and geographic data to understand and interpret the world around them.

One of the most well-known geography professors in the United States was Mark Jefferson. Jefferson was born in Ohio in 1853 and graduated from Brown University in 1875. He then went on to earn a master's degree in geography from the University of Edinburgh in 1877.

Jefferson taught geography at the University of Pennsylvania from 1878 to 1918. During his time there, he became one of the leading figures in the field of geography in the United States. He was instrumental in the development of the discipline and played a key role in establishing geography as a separate and distinct field of study.

Jefferson was known for his enthusiastic teaching and his ability to make geography accessible to his students. He was also a prolific writer, publishing numerous articles and books on the subject. Some of his most notable works include "The Science of Geography," which was published in 1892, and "The Elements of Geography," which was published in 1896.

Jefferson's contributions to the field of geography were recognized and celebrated during his lifetime. He was elected a fellow of the American Geographical Society in 1880 and was awarded an honorary degree from Harvard University in 1896.

After his retirement from the University of Pennsylvania in 1918, Jefferson continued to work on his research and published several more books on geography. He died in 1928, leaving behind a legacy of contributions to the field of geography that continue to be felt today.
ISAAC BOWMAN

CHAPTER 1: THE NEW GEOGRAPHY IN THE U.S. BEFORE WORLD WAR I

One of the outstanding students was Isaiah Bowman. After completing his undergraduate work at Harvard in 1906, Bowman received a scholarship to study in Europe at the University of London. It was there that he came under the influence of the Scottish geographer, Robert E. Goodenow, who introduced him to the work of the French geographer, Jules Forman.

In 1907, Bowman returned to the United States and began teaching at the University of Chicago. He quickly made a name for himself as a brilliant teacher and scholar, and was soon appointed as a professor of geography.

Bowman's work was characterized by a focus on the social and economic aspects of geography, rather than the traditional emphasis on physical features such as climate and topography. This approach was in line with the broader trend of the time, which saw geography as a discipline that could be used to understand and improve the human condition.

Bowman's most significant contribution to geography was his work on the relationship between geography and education. He believed that geography should be taught in schools, and argued that it was essential for the development of informed citizens.

Bowman's teachings on geography had a significant impact on the development of American geography. He was one of the first to use the term "geography" in the modern sense, and his work helped to establish geography as a distinct academic discipline. He also played a key role in the establishment of the Association of American Geographers, which he helped to found in 1906.

Bowman's legacy continues to be felt today, as his emphasis on the social and economic aspects of geography remains a central theme in the discipline.
In 1913 Rossman received a grant from the American Geographical Society to permit him to return to Peru for the third time. The results were formulated in a book, A Study of the Precambrian Geology of the Andes of Peru (1919). The combination of his data and his field experience was becoming more important, and he drew his findings into a more uniform and consistent chronology of the earth. He had gathered together a series of biomarkers, which he used in the book The Age of the Southern Permian (1936) and Desert Tertiary (1937). He was recognized in the High Andes of Southern Peru for his age diagrams, which he described as topographic maps showing the age distribution of the various rock formations.

1. The great system of highland, well-integrated, mature slopes above which are:

2. Deep valleys, usually filled, and narrow, and narrow, narrow, narrow.

3. Laid residual mountains comprised of resistant, highly deformed rock, now sculptured into a series of terraces and sharp cornes.

4. Other closely associated types, various surfaces and plateau of the Western Cordilleras.

5. In the valley floors, a deep complements of flat terraces, terrace, terrace, and terrace.

6. Finally, there is in all the valley bottoms, a deep alluvial flat formed during the past period and now in process of erosion (Rossman, 1919).
levels of civilization. His book, Principles of Human Geography (Huntington and Cushing, 1920), which was written as a college textbook, organized a picture of world geography in terms of human activities with the "explanatory description" of the physical earth omitted or greatly reduced.\(^8\)

\(^8\)This book was severely criticized by H. H. Bancroft in a review published in the Geographical Review, 12 (1922): 157-160, which many geographers at that time thought was unnecessarily harsh. Huntington published a revised edition in 1922 in which many of Bancroft's criticisms were met.

Huntington's books have enjoyed recognition not only among geographers but also among historians, sociologists, and medical scholars. His generalizations about climate and man remain thought-provoking. His vivid descriptions of places are among the most effective examples of geographical writing from any age. Yet in the period when Huntington was making his studies, the quantitative data on which much work had to be based were not in existence (Butter, 1964:437). The identification of climatic cycles was based on scattered evidence, including the study of growth rings on trees, the bands of clay in drained lakebeds, or even the scattered references to floods and droughts in the literature (Chappell, 1970). Modern studies of growth rings and clay bands are much more reliable than the information he was able to bring together. His maps of degrees of civilization were based on the opinions of people with whom he corresponded. Since people commonly rate
In the early years of the twentieth century, these geographers who followed the Darwinian approach were used to regional geography. Here, within the confines of the student could not go back and forward, so that it was possible to work on the problem of the extent of a region or its boundaries. This first step to define a cohesive field of study including physical, human, and cultural aspects. The term "regional" was defined by W. R. Thurnam in 1909, and the concept of a region as a bounded area was widely accepted. The boundaries of regions were often defined by the natural features such as rivers, mountains, or climate. The regional approach was based on the assumption that regions are distinct and identifiable units with characteristics that are different from the surrounding areas. This approach led to the development of regional geography, which became a major discipline in its own right. Regional geography focused on the study of the relationships between the physical environment and human activities within a particular region, taking into account the interplay between natural and social factors. This approach was particularly useful in the study of areas with complex geographical features, such as mountainous or coastal regions, where the interaction between human activity and the natural environment is crucial. The regional approach also helped to address the problem of the scale of analysis, allowing geographers to study regions at various scales, from small local areas to larger regional systems. This approach was used in the study of a wide range of topics, including the development of economic activities, the distribution of resources, and the impact of natural disasters.
publication of her first book, *American History and Its Geographic Conditions* (Semple, 1905). She presented her version of the first volume of Ratzel's *Anthropogeography* in her book, *Influences of Geographic Environment*, which was published in 1911. Here is what she wrote about her method:

The writer's own method of research has been to compare typical peoples of all stages of cultural development, living under similar geographic conditions. If these peoples of different ethnic stocks but similar environments manifested similar or retained social, economic, or historical development, it was reasonable to infer that such similarities were due to environment and not to race. Thus by extensive comparison, the race factor in these problems of two unknown quantities was eliminated for certain large classes of social and historical phenomena (Semple, 1911:70).

Here is another quotation from the opening paragraph of her book:

Man is a product of the earth's surface. This means not merely that he is child of the earth, dust of his dust, but that the earth has mothered him, fed him, set his tasks, directed his thoughts, confronted him with difficulties that have strengthened his body and sharpened his wits, given him his problems of navigation or irrigation, and at the same time whispered hints for their solution. On the mountains he has given him leg muscles of iron to climb the slope; along the coast he has left these weak and flabby, but given him instead vigorous development of chest and arm to handle his paddle or oar. In the river valley she attaches him to the fertile soil, circumscribes his ideas and ambitions by a dull round of calm, exacting duties, narrows his outlook to the cramped horizons of his farm. Up on the wind-swept plateaus, in the boundless stretch of grasslands and the waterless tracts of the desert, where he roams with his flocks from pasture to pasture and oasis to oasis, where life knows much hardship but escapes the grid of drudgery, where the watching of the grazing herd gives him leisure for contemplation, and on the water-ranged life of a big horizon, his ideas take on a certain gigantic simplicity; religion becomes monotheism, God becomes one, unperceived, and the grass of the steppe, stretching on and on without break or change. Chewing over and over the old of his simple belief as the one food of his unfed mind, his faith becomes fanaticism; his big special ideas, born of that ceaseless regular wandering, outgrow the land that bred them and bear their legitimate fruit in wide imperial conquests (Semple, 1911:1–2).

The quotations suggest two things: first, that her style of writing has a certain literary quality that makes reading it a delight, yet which might—and sometimes does—carry the theme beyond what sober judgment would permit; second, that the concept of the earth as the controlling factor in human life is carried beyond the possibility of objective verification. It is true that in combing the writings of all nations for examples to illustrate her principles, she fell into an error not uncommon when deductive reasoning is followed...
DEBRA R. JOHNSON AND J. RUSSELL SMITH

While anthropogeography was being developed by people trained in geology, the advanced study of economic and commercial geography...
J. Russell Smith was a unique man of unusual energy and versatility. His intellect, based on his early training in both geography and economics, was a natural talent that he developed to the fullest. His wide knowledge of the world, acquired through travel and study, was a rich source of material for his writing and teaching. His dedication to his work and his commitment to the advancement of knowledge were qualities that made him a role model for his students and colleagues. He was a man of great integrity and a true scholar.
ROLLIN D. SALISBURY

When the new department of geography was established in 1893, Rollin D. Salisbury, also the chairman of the Department of Geography at Chicago, was appointed to the faculty. He was a member of the faculty from 1893 to 1899, and was subsequently appointed as chairman of the department.

Salisbury was a prominent figure in the development of geography as a scientific discipline. He was a member of the American Geographical Society and the American Association of Geographers. He was also a member of the Board of Trustees of the University of Chicago, and served as its president from 1909 to 1918.

Salisbury's contributions to the field of geography were significant. He was one of the first to use the term "geography" in the modern sense, and he helped to establish geography as a separate discipline, distinct from other sciences such as biology and chemistry.

Salisbury's work was characterized by a focus on the study of landforms, climate, and economic factors. He was particularly interested in the study of the role of geography in human history and culture.

Salisbury's influence on geography was significant. He was a leading figure in the development of the discipline, and his work helped to establish geography as a major field of study.

In addition to his work in geography, Salisbury was also a prominent figure in the field of education. He was the founder of the American Geographical Society, and he was a member of the Board of Trustees of the University of Chicago, and served as its president from 1909 to 1918.

Salisbury's contributions to the field of geography were significant. He was one of the first to use the term "geography" in the modern sense, and he helped to establish geography as a separate discipline, distinct from other sciences such as biology and chemistry.

Salisbury's work was characterized by a focus on the study of landforms, climate, and economic factors. He was particularly interested in the study of the role of geography in human history and culture.

Salisbury's influence on geography was significant. He was a leading figure in the development of the discipline, and his work helped to establish geography as a major field of study.
Sabbatical leave had been awarded to Geode in 1955, and during his sabbatical year, he had traveled extensively in Europe, visiting many of the leading centers of geographical research. He was particularly interested in the work being done in Russia and Eastern Europe, and he spent several months studying in Moscow, where he had the opportunity to meet with many of the leading Russian geographers of the time.

Geode returned to the University of Chicago in the fall of 1956, and he promptly took up the task of organizing and directing the new department of geography. He immediately began to build a strong faculty, recruiting many of the leading geographers of the day, including Lyman J. P. Smith, who had been his mentor at the University of Chicago, and John H. Jenkins, who had been his colleague at the University of Pennsylvania.

Geode's vision for the new department was one of intellectual openness andological development. He believed that geography should be a truly interdisciplinary field, and he worked hard to attract students from a wide range of disciplinary backgrounds, including anthropology, sociology, and economics.

One of the most important contributions that Geode made to the department was his emphasis on research. He believed that research was the key to advancing the field of geography, and he encouraged his faculty to pursue research in a wide range of areas, from land use planning to environmental science.

Geode was also a strong advocate for the teaching of geography. He believed that geography should be taught in a way that was engaging and relevant to the needs of society. He worked hard to ensure that his students were well-prepared for careers in a variety of fields, including government, business, and non-profit organizations.

In addition to his work at the University of Chicago, Geode also served as a consultant to a number of organizations, including the United Nations and the World Bank. He was particularly interested in the use of geographical data to understand and address global issues, such as poverty and environmental degradation.

Geode's contributions to the field of geography were widely recognized, and he was awarded many honors and distinctions during his lifetime. He was a fellow of the American Geographical Society, the Royal Geographical Society, and the Institute of Electrical and Electronics Engineers.

In 1962, Geode was appointed as the first Director of the Center for Urban Research at the University of Chicago. He used this position to further his work on urban planning and development, and he continued to be a leading voice in the field of geography until his retirement in 1972.
these matters were discussed at length by the participants in the Chicago seminar.32

Another distinctive characteristic of the Chicago group was the emphasis it placed on field studies. In the tradition of the exploring expeditions of the West, all graduate students were expected to examine the character of the landscapes and to identify geographical problems from direct observation. In September 1915 Tower led a party of six students in a traverse of the Northern Appalachians from Pittsburgh to Harrisburg. In September 1914 Barrows led a much larger group on foot across the Southern Appalachians. In 1915 Goode conducted a trip to the West, visiting ranches, mines, and irrigated areas, and including a visit to the Panama Pacific Exposition in San Francisco. This kind of field course was a distinctive feature of Chicago before World War I. But, as we will see, students like Wellington D. Jones, Carl O. Sauer, and K. C. McMurry began to visualize a quite different kind of field experience, in which students would not be taken on a conducted tour but would be set to work in a restricted area to identify problems and demonstrate their ability to find answers. It is also important that in their field studies, the geographers learned to cooperate with scholars in other disciplines. For example, Henry C. Cowles, professor of botany at Chicago, was interested in plant ecology. He involved geographers in his studies of plant succession on the Indiana Dunes. Cowles was one of the founders of the Association of American Geographers (1904) and its president in 1910.

MODERN GEOGRAPHY IN 1914

In 1914 George B. Roobach, who was assistant professor of economic geography at the University of Pennsylvania, published the results of a questionnaire he had sent out to people who called themselves geographers. He found that in a seminar discussion of the scope and method of geography almost everyone had his own definition. As in Germany four decades earlier, very few people who taught geography had been formally educated as geographers. Therefore, each new geographer felt impelled to answer the question: “What is geography?” And true to the nature of most scholars, it would not do to accept any other scholar’s definition of the field. Consequently, there was little resolve concerning the nature of geography. Roobach asked for a listing of the most important tasks to be undertaken by geographers. He received 29 replies, all but four of which were from scholars in the United States. The four others were well-known British geographers (Roobach, 1914).

Roobach found an almost unanimous agreement that geography was the study of the relationship between the earth and life—which was essentially the idea proposed by Davis. The respondents then listed the following tasks as important in the order given:

1. The exact determination of the influence of geographic environment. This was placed first by 22 out of the 29 respondents.
2. Regional studies of selected areas. There were some British suggestions that a major task would be to divide the world into its major natural regions.
3. The definition and organization of geographical material.
4. The improvement of the teaching of geography.
5. The study of the influence of geographic factors on history.
6. The exploration of unknown or little-known places (suggested by the British geographer John Scott Keltie and by Robert E. Peary).
7. The study of physical geography.

So it was in 1914. Geographers did not realize that culture, not nature, determined the significance of environment, site, and natural resources, in spite of the critique of environmentalism advanced by ethnologists since before 1900. Moreover, the interuniversity conferences between Columbia-trained ethnologists and Yale geographers, which were arranged by Franz Boas in 1915 for exploring the problem of environmental conditioning of society, failed to inculcate geographers against the naturalistic assumption. The principle that culture is the fundamental extraenvironmental factor in the derivation of human activities did not penetrate geography more generally until after World War II (Speth, 1978:10–11).