Wildfire responses to abrupt climate change in North America

1Department of Geography, University of Oregon, Eugene, OR 97403; 2School of Geographical Sciences, University of Bristol, Bristol BS8 1SS, United Kingdom; 3Department of Quaternary Geology, Geological Survey, Denmark and Greenland, Øster Voldgade 10, DK-1350 Copenhagen, Denmark; 4Royal British Columbia Museum, Victoria, BC, Canada V8W 9W2; 5School of Geography, University of Southampton, Southampton SO17 1BJ, United Kingdom; 6Alaska Quaternary Center, University of Alaska, Fairbanks, AK 99775; 7Department of Earth Science, Montana State University, Bozeman, MT 59717; 8Department of Geography, University of Utah, Salt Lake City, UT 84112; 9Center for Sustainable Environment and 10Ecological Restoration Institute, Northern Arizona University, Flagstaff, AZ 86011; 11Centre for Bio-Archeology and Ecology (Unite´ Mixte de Recherche 5059, Centre National de la Recherche Scientifique) and Paleoenvironments and Chronoecology, Institut de Botanique, Universite´ Montpellier 2, 163 Rue Broussonet, F-34090 Montpellier, France; 12Department of Earth Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom; 13Division of Hydrologic Sciences, Desert Research Institute, Nevada System of Higher Education, 755 East Flamingo Road, Las Vegas, NV 89119; 14Institute of Plant Sciences and Oeschger Centre for Climate Change Research, University of Bern, Altenberggr. 21, CH-3013 Bern, Switzerland; and 15Ecological Restoration Institute, Northern Arizona University, Flagstaff, AZ 86011

Edited by Christopher B. Field, Carnegie Institution of Washington, Stanford, CA, and approved December 29, 2008 (received for review August 19, 2008)

It is widely accepted, based on data from the last few decades and on model simulations, that anthropogenic climate change will cause increased fire activity. However, less attention has been paid to the relationship between abrupt climate changes and heightened fire activity in the paleorecord. We use 35 charcoal and pollen records to assess how fire regimes in North America changed during the last glacial–interglacial transition (15 to 10 ka), a time of large and rapid climate changes. We also test the hypothesis that a comet impact initiated continental-scale wildfires at 12.9 ka; the data do not support this idea, nor are continent-wide fires indicated at any time during deglaciation. There are, however, clear links between large climate changes and fire activity. Biomass burning gradually increased from the glacial period to the beginning of the Younger Dryas. Although there are changes in biomass burning during the Younger Dryas, there is no systematic trend. There is a further increase in biomass burning after the Younger Dryas. Intervals of rapid climate change at 13.9, 13.2, and 11.7 ka are marked by large increases in fire activity. The timing of changes in fire is not coincident with changes in human population density or the timing of the extinction of the megafauna. Although these factors could have contributed to fire-regime changes at individual sites or at specific times, the charcoal data indicate an important role for climate, and particularly rapid climate change, in determining broad-scale levels of fire activity.

Biomass burning | charcoal | comet | Younger Dryas

It is generally asserted that anthropogenic climate change will lead to widespread and more frequent fires (1, 2). Data from western North America in recent decades are consistent with this; they show that increases in the frequency of wildfire and the duration of the fire season are linked to increased spring and summer temperatures and earlier spring snowmelt (3). Changes in the pattern of precipitation are likewise affecting fire activity (4), as is the development of high fuel loads associated with long-term fire suppression (5). The effects of climate variability on fuels and fire regimes on multiple time scales have received much attention (6–8), and some research has linked shifts in fire regimes at individual sites to rapid climate changes (9). However, the broad-scale response of wildfires to large, abrupt climate changes in the past has received little attention (10, 11). One period of particular interest is the last glacial–interglacial transition (LIGT, 15–10 ka), when large and sometimes abrupt (i.e., decades to centuries) changes in climate and biota occurred in many parts of North America. In some regions, environmental changes at the beginning and end of the Younger Dryas chronozone (YDC) (12.9–11.7 ka) (12), in particular, were larger than at any subsequent time (13). Such changes are similar in terms of the magnitude and rate of change to those projected for the future (14–16) and thus provide an opportunity to examine the response of fire regimes to rapidly changing environmental conditions in a variety of settings.

Investigating wildfire activity during the LIGT also allows us to test the recent proposal that a catastrophic extraterrestrial impact event at ~12.9 ka had “continent-wide effects, especially biomass burning” (17). Firestone et al. (17) proposed that a comet exploded over the Laurentide ice sheet, producing a shock wave that would have traveled across North America at hundreds of kilometers per hour, and if multiple large airbursts occurred, could have ignited many thousands of square kilometers. Firestone et al. (17) also hypothesized that the event triggered global cooling, and that extreme wildfires destroyed forests and grasslands and produced charcoal, soot, toxic fumes and ash. These impacts, in turn, ostensibly limited the food supplies of herbivores, contributing to the extinction of North American megafauna and forcing major adaptations of PaleoAmericans (17), although this latter point has been disputed (18).

Even without invoking catastrophic events such as a comet impact, there are still reasons to expect a broad-scale response of fire activity in North America to the abrupt climate changes during the LIGT (19–21). At the beginning of the YDC (12.9 ka), North Atlantic meridional overturning slowed or shut down (21, 22). This led to abrupt cooling in the circum-North Atlantic region and general changes in atmospheric circulation around North America (23–25). Because atmospheric circulation affects temperature, precipitation and the position of storm tracks (26),

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

1To whom correspondence should be addressed. E-mail: jmarlon@uoregon.edu.

This article contains supporting information online at www.pnas.org/cgi/content/full/0808212106/DCSupplemental.

© 2009 by The National Academy of Sciences of the USA
27), the particularly abrupt onset of the YDC was registered across the continent. A large, rapid climate reversal occurred in regions adjacent to the North Atlantic, whereas more distant regions registered changes in the progress of the LGIT (19, 28, 29). Other abrupt climate transitions focused on the North Atlantic, such as the onset of the Bølling–Allerød interval (14.7 ka), or short climatic oscillations, such as the intra-Allerød cold period (IACP) (~13.2 ka), may also have had continent-wide impacts on climate.

Large-amplitude, rapid climate change affects fire regimes directly by altering the patterns of ignition and fire weather (30) and indirectly through vegetation composition (19, 31, 32), a major determinant of landscape flammability (33). The nature of the changes in ignition, fire weather, and vegetation composition will not be homogenous at a regional scale, but any rapid climate change, whatever its direction, imposes stress on an ecosystem and can trigger some change in the fire regime. Stress would result in increased mortality of the woody vegetation and a buildup of fuel, for example, as a result of pest outbreaks or physiological intolerance of new climate extremes (50). The rate at which such factors affect the fire regime varies, so a broad-scale change in fire activity would not necessarily exhibit absolute synchrony, but some change should still be evident at most sites.

Charcoal and pollen from 35 lake-sediment records across North America [see supporting information (SI) Fig. S1 and Table S1] were used to assess changes in fire activity (defined here as biomass burned and fire frequency) and woody biomass during the LGIT. Variations in charcoal abundance or influx (particles/cm²/yr) provide a record of past trends in biomass burning (34–37). Fifteen high-resolution macroscopic charcoal records (i.e., <50 years per sample and particles >100 µm) were further analyzed to reconstruct past fire episodes (defined as 1 or more fires occurring during the time spanned by a charcoal peak) (36, 38) and charcoal peak magnitude, an assumed metric of fire size, severity, or proximity (39). The proportion of arboreal pollen (AP) in the lake sediments, which reflects the abundance of tree and shrub taxa on the landscape, was used to estimate the levels of woody biomass in the vegetation at the sites. AP can overestimate tree cover and mask shifts in trees and shrubs (40), so we consider it only a general indicator of available woody fuels. Records of charcoal influx, peak frequency, and AP were used to document trends in biomass burning (35, 36), fire-episode frequency (hereafter termed fire frequency), and woody fuel levels. These trends were compared with ice-core records of CO₂ (41) and δ¹³O (21), the latter clearly illustrating abrupt climate changes, to explain the broad-scale changes in fire activity.

Results and Discussion
Trends in Fire Regimes and Woody Fuels. The general trend of charcoal influx across all sites (as represented by a 3-segment linear regression, Fig. 1C) indicates a significant (P < 0.01) increase in biomass burning until the beginning of the YDC, no overall change during the YDC, and then a further increase in biomass burning thereafter (P < 0.01). A local regression curve, which does not assume a specific form for the trend, displays a similar pattern. The bootstrap confidence intervals around charcoal influx indicate that these trends are not induced by any particular record. Inspection of the records (Fig. 2 and Fig. S2), however, shows that there can be different responses at individual sites reflecting modulation of the regional-scale response by local factors. For example, whereas sites 4–9 in southern British Columbia (BC) all show increasing biomass burning from 15 to 10 ka, spatial patterns are complex in the Pacific Northwest, Sierra Nevada, and Northern U.S. Rocky Mountains (NRM). The 3 sites in Alaska (AK) show increasing burning during the Bølling–Allerød and stable levels during the YDC, but trends are variable after the YDC. Almost no spatial coherence is evident in the Southwest, Midwest, and East, although these regions have limited data. Thus, whereas the composite record strongly indicates broad-scale trends in biomass burning, heterogeneity is expected and apparent at local to regional scales.

The overall trend in fire frequency increases during the Bølling–Allerød (Fig. 1D, Fig. S3) and has no discernable trend thereafter. Some regions show coherent patterns in fire frequency, including AK sites 1 and 2), the Pacific Northwest (sites 11, 13, and 14), and the NRM (sites 21–23, and 25) (Fig. S3), although the nature of the changes naturally differ between regions. Fire frequency is most variable after 11.7 ka; only sites 21 and 29 show little or no change after that time. In general, peaks in fire frequency tend to match local maxima in biomass burning (e.g., at 13.9, 13.1, 12.3, and 11.7 ka).

There are no empirical studies that link the absolute size of charcoal peaks to a specific fire characteristic, such as area burned or severity, so the peak magnitudes must be interpreted with caution (Fig. S3). However, in previous research, unusually large peaks have been linked to extreme fire years in the historical record when large areas burned at the regional scale (42, 43). For example, fires in 1910 that burned >400,000 ha in the NRM comprised the largest peak of the last 120 years at site 20 (42). Consequently, peak-magnitude data suggest that many large fire episodes occurred between 15 and 10 ka, and large or severe fire episodes were more likely after the end of the YDC than before it, as for example in the Pacific Northwest (sites 11–13), the NRM (sites 20, 23–25), and the Southwest (site 27) (Fig. S3). Fire frequency was also high at most of these sites after the YDC.

The woody biomass trend increases during the Bølling–Allerød, is stable during the YDC, and decreases thereafter (Fig. 1E). Trends at individual sites again vary regionally and with elevation (Fig. 2 and Fig. S2). Woody biomass declines at most sites in BC and increases in the Sierra Nevada, Southwest, and Northeast. Other regions show mixed patterns. Fire–fuel relationships among sites also show regional similarities. For example, trends in charcoal influx and AP are similar at mid- to high-elevation sites in the Pacific Northwest and NRM (sites 13, 15, 23, 24, and 25), where biomass burning and woody fuel levels generally increased together as open forests became more closed or alpine vegetation was replaced by parkland and then forest during the LGIT (8). In BC (i.e., at sites 5, 6, 7, 8, and 10), an inverse relationship in fire and fuels is apparent because biomass burning increased as closed mixed conifer forests were replaced by more open forests (44). Charcoal influx is often opposite to AP in the Midwest as well, where grass abundance (low woody biomass) is a good predictor of biomass burning (45). Important changes in woody fuel levels in AK are obscured in the AP trends, because AP does not show changes in the relative importance of shrubs versus trees. AP declines at site 3 at 11 ka, for example, despite a large increase in Populus at that time (63). Overall, the spatiotemporal variability in woody fuel levels and biomass burning makes it difficult to generalize about fire–climate–vegetation linkages at the continental scale, but the role of climate in determining both woody fuel levels and fire activity underpins the regional coherence in charcoal–AP relationships.

The AP data do indicate that availability of woody fuels was not a limiting factor in determining levels of biomass burning at the beginning or end of the YDC.

Evidence for Continent-Wide Wildfires at 12.9 ka. Firestone et al. (17) hypothesized that a comet impact at 12.9 ka ± 50 y triggered continental-scale wildfires across NA. One specific example has been proposed by Kennett et al. (46). However, the well-documented rapid climate changes of this time alone may have triggered increased fire at a regional scale. To separate these effects, we compared the response of fire during intervals of rapid climate changes at the beginning and at the end of the YDC. Fire-episode events that occurred during the transitions
into and out of the YDC were identified in both the high- and low-resolution records (see Methods) to determine whether fire episodes, regardless of magnitude, were more likely to occur (within ±50 y) at 12.9 ka than at 11.7 ka (Figs. 1 and 2). Because of high uncertainties in radiocarbon dating during the YDC, both 100- and 500-y window widths were used to identify fire episodes (Fig. 2). By using a 100-y window, 13 sites across the continent (Fig. 2) showed a peak (or increasing charcoal if no sample was within the window) at 12.9 ka. The peak was large (i.e., >90th percentile based on quantile regression) in the 9 low-resolution records, but it was not present in any of the 5 high-resolution records that registered a peak at 12.9 ka (±50 y) (Fig. S3), suggesting that the relatively high magnitude of fires at 12.9 ka in the low-resolution sites may be an artifact of the small number of samples in these records. The data also indicate that only 3 sites showed a peak only at 12.9 ka, whereas 12 sites showed a peak only at 11.7 ka, the abrupt end of the YDC (Fig. 2 and Figs. S1 and S3). Using a large 500-y window width greatly increased the number of sites recording fires at 12.9 ka; however it also increased the number of fire episodes recorded at 11.7 ka (Fig. 2). It could be argued that poor dating control on some of the records prevented identification of fire episodes at 12.9 ka; however, when we limited our analysis to the 14 records with dates within ±300 years of 12.9 ka (Fig. 2), the results did not change. Peaks in charcoal influx were registered throughout the LGIT, particularly associated with abrupt climate changes, but there was no evidence of continent-wide wildfires at the beginning of the YDC.

Potential Controls on Fire Regimes and Woody Fuel Levels During the LGIT. The broad-scale trends in biomass burning, fire frequency and magnitude, and woody fuels during deglaciation are consistent with climate changes documented by ice cores, marine and lake sediments, speleothem, and other records from North America (21, 28, 47, 48). During the Bolling–Allerød, woody
biomass, biomass burning, and fire frequency all increased (Fig. 1E), a likely consequence of warming and increased tree cover (40). A stepped increase in biomass burning is evident at 13.9 ka, coincident with a short period of warming and is matched by a peak in fire frequency.

A particularly steep increase in charcoal influx occurred at 13.2 ka (Fig. 1C); this is the largest and most rapid change in biomass burning during deglaciation. Burning was widespread but not continent wide (see site details in SI Methods). Furthermore, the change in fire regime is not unique: Several sites show similar peaks before the onset of the YDC, and many show an even larger peak at the end of the YDC. The widespread increase in fire activity (i.e., charcoal influx and peak frequency) at 13.2 ka appears ~300 years before the hypothesized comet impact (17). Of the sites that do show fire activity at 13.2 ka, many are from regions distant from the proposed locus of the impact area over the Laurentide ice sheet, as well as from the proximal influence of the ice sheet on regional climates (e.g., in AK, the Southwest, Pacific Northwest, and the NRM). The timing and distribution of fire activity at 13.2 ka is consistent with the IACP—an abrupt short-term climate reversal recorded in the GISP δ18O ice-core data (Fig. 1B). The IACP is associated with a rapid oscillation in North Atlantic temperatures that may have affected atmospheric circulation patterns across the continent (21, 23, 49) and increased the likelihood of drought as well as severe frost damage on some tree species (50). Any increase in vegetation mortality associated with such events would have added to the available fuels and facilitated an increase in fire.

During the YDC, ice-core δ18O data indicate cool and variable temperatures in the North Atlantic region. Cooling is also evident in parts of western North America based on pollen and speleothem records (25, 28, 49), but climate patterns likely varied across the continent (27). The composite records (Fig. 1) show that biomass burning was higher but more variable than before 13.2 ka. Fire frequency and biomass burning had local maxima at ~12.3 ka and at the end of the YDC (11.7 ka). Although there are fundamental and widespread changes in vegetation at the beginning (and end) of the YDC (19), the woody biomass trend shows little change during the YDC. This lack of change does not preclude change in specific regions e.g., Alaska (48) or at individual sites.

Biomass burning and fire frequency both decline at 11.7 ka but increase thereafter. Woody biomass, however, decreases from 11.7 to 10.0 ka. This contrast in behavior marks a shift in the relationship between fire and vegetation. Before 11.7 ka, woody biomass and fire activity generally change in parallel; after 11.7 ka, they change in opposite directions. Early-Holocene warming and enhanced seasonality facilitated the emergence of new vegetation communities and disturbance patterns (19, 32, 51). Low-elevation sites in the western US show the biggest changes, with declining woody biomass as forests became more open (44, 52) and more likely to burn (Fig. S2 and Fig. 2). High-elevation sites in the Pacific Northwest and NRM also show increasing fire activity but in association with increasing rather than decreasing woody fuel levels. New fire–fuel patterns also evolved in the Northeast after the YDC, with declines in biomass burning associated with increases in woody biomass.

Factors other than climate may have contributed to observed changes in fire regimes during the LGIT, including changes in atmospheric CO2, the arrival of Clovis people between ~13.4 and 12.8 ka (53), and the extinction of herbivorous megafauna (54). Changes in CO2 affect vegetation productivity (55) and potentially fuel loads. Atmospheric CO2 increased in stepwise fashion from the Last Glacial Maximum to the beginning of the Holocene (56) (Fig. 1A). The changes in woody biomass, fire frequency, and biomass burning are not coincident with changes in CO2, although increasing CO2 may have contributed to woody biomass production during the early part of the Bølling–Allerød. Clovis people appeared in North America between 13.4 and 12.8 ka, broadly coincident with the sharp increase in biomass burning at 13.2 ka, and then rapidly spread out across the continent (18). Paleoindians may have increased fire activity directly by setting more fires (57) or indirectly by reducing megafaunal populations. The decline in megafaunal populations, in turn, could have increased fuel loads and changed soil moisture regimes, both of which could have promoted fire (58, 59). There is some evidence for an association between megafaunal declines based on Sporormiella data and increased burning in the Northeast (58).

The 13.2 ka fire peak is registered at sites widely dispersed across the continent; it is not consistent with the progressive colonization of North America by Paleoindians. It also seems unlikely that people (or megafauna) would have caused an increase in burning across the full range of elevations represented by the sites and particularly at high-elevation sites (the fire peak is evident at 5 sites >2,000 m; see SI Methods and Table S1). Furthermore, most fire records show discrete peaks rather than permanent regime changes, as might be expected if humans or megafauna exerted a major control on fire regimes. It is possible, however, that the arrival of people and/or the extinction of megafauna (18, 53, 54) played a role in permanently altering fire regimes at the sites that show a fundamental fire-regime shift prior to or at 13.2 ka. After 13.2 ka, fire-regime changes are not coincident with periods of increase in human populations. Thus, the spatial and temporal distribution of the
fire signal point toward climate as the primary cause of increased fire activity at 13.2 ka.

In summary, fire records from North America show stepped increases in biomass burning during the LGIT. Abrupt climate changes are generally marked by a shift in the level of burning as well as an increase in the incidence of fires. No continent-wide fire response is observed at the beginning of the Younger Dryas chronzone, the time of the hypothesized comet impact. The results provide no evidence of synchronous continent-wide biomass burning at any time during the LGIT. The data indicate variability in the direction of changes in fire regimes among paleofire records, which may be due in part to noise and local variability (60), human activity, or megafaunal declines. The distribution of charcoal peaks across time and space, however, suggests that such patterns are more likely a result of spatially complex climate controls and/or vegetation changes. Although there is broad congruence between changes in climate, fire, and human populations at the beginning of the YDC, we find no convincing evidence that the observed changes in fire activity were caused solely by changes in human or herbivorous megafauna populations.

Methods

We used 30 lake-sediment records in North America from the Global Charcoal Database (GCD v. 1.*) and 5 records from authors that (i) were recording fire activity before, during, and after the YDC; (ii) had at least 5 data points and one date (radiocarbon or tephra) from 10 to 15 ka; and (iii) had pollen data from the same site. We did not include charcoal data from records that only sampled the beginning of the YDC because there is no baseline for analyzing changes in the fire regime with such data (46). We also excluded marine charcoal data (61) because there is no evidence that charcoal influx and peaks in influx in such records reflect recent fire activity from a consistent source region. Pollen data were obtained from authors or from the North American Pollen Database‡ (Table S1). We examined the chronologies for each record to ensure that the age–depth relationships were generally consistent throughout the LGIT and that no age reversals occurred during that interval. Under such conditions, age controls in lake-sediment records are sufficient to describe centennial-scale variations (see SI Methods).

For all analyses, charcoal concentration data (particles cm⁻²) were converted to influx values (particles cm⁻² yr⁻¹) (see SI Methods). For the low-resolution records, millennial-scale (background) trends were identified by smoothing the data by using quantile regression (62). Any increase in charcoal influx above background within a defined interval (i.e., either ±50 or ±250 years) was considered a peak. High-resolution records were smoothed by using a decomposition technique (63) that separates peaks from background charcoal and allows the reconstruction of peak magnitude and fire frequency. Arboreal pollen proportions were obtained by dividing the sum of arboreal and shrub pollen percentages by the sum of the total terrestrial pollen percentages [AP/(AP + NAP)].

To display the general trends in the charcoal influx, the data were transformed to stabilize the variance and standardized to facilitate comparisons across a range of charcoal influx levels (37). To assess the significance in the trend, we fit a segmented linear regression model to these data, with breakpoints at the beginning and end of the YDC (see SI Methods). We also summarized the data by using "lowes" or local regression curves. Confidence intervals for the local regression curves were generated by a bootstrap approach in which individual records (not samples) were sampled with replacement over 1,000 replications. The approach reveals the sensitivity of the trends to the particular selection of charcoal and pollen records used here. Pollen data were also transformed (64) and summarized by using local regression curves. The peak frequency trends in the high-resolution records were summarized by a local-density (kernel smoothing) procedure.

ACKNOWLEDGMENTS. We thank Jack Williams for providing pollen data, Jake Bartruff for map assistance, D. Burney, D. Gavin, D. J. Meltzer, and D. K. Grayson for discussions, and 2 anonymous reviewers for comments that greatly improved the manuscript. This work was supported by U.S. National Science Foundation Paleoclimatology and Geography and Regional Science Program Grants ATM-0117160, ATM-0714146, and BCS-0727424. The charcoal data are included in Global Charcoal Database Version 2 compiled by the Global Palaeofire Working Group (GPWG) of the International Geosphere–Biosphere Cross-Project Initiative on Fire. The GPWG is supported by the U.K. Natural Environment Research Council’s QUEST (Quantifying Uncertainty in the Earth System) Program. Data compilation and analysis was supported by the QUEST-Deglaciation Project (M.P. and S.P.H.).

REFERENCES

Supporting Information

Marlon et al. 10.1073/pnas.0808212106

SI Methods

This file contains additional methodological details, 1 table that describes the sites in the main text, and 3 figures. Fig. S1 is a site map. Fig. S2 shows the individual records of charcoal influx and proportions of arboreal pollen during deglaciation along with background trends in biomass burning and radiocarbon dates. Fig. S3 shows the peak frequencies and magnitudes of the high-resolution sites, as well as the number and location of radiocarbon dates in these records.

Data Sources and Locations. Charcoal and pollen data sources, site locations and elevation, and temporal coverage during the Last Glacial–Interglacial Transition (LGIT) are provided in Table S1. Numbers in parentheses after site names are reference numbers. Site locations are shown in Fig. S1 and are coded to reflect the existence of a charcoal peak at 12.9 and 11.7 ka, as determined by the analysis techniques described below.

Chronologies. Lake-sediment records of the kind selected for paleoecological studies have generally well-behaved sedimentation regimes with slowly varying sedimentation rates. This allows chronological control with fewer radiocarbon dates than required for discontinuous terrestrial records, or marine records with continuous or intermittent bioturbation of sediments. For example, the age of a synchronous vegetation change in eastern North America, the Tsuga (hemlock) decline, can be estimated with subcentury precision (475014C y BP, with a standard error of the mean of (50 y) using networks of lake records like those used here (1, 2). However, owing to the reorganizations of the circulation of the atmosphere and ocean that are involved in the abrupt climate changes, larger than usual uncertainties arise in calibrating radiocarbon ages during the LGIT (3), and so we compared the results from our peak identification analysis based on both a narrow 100-y and wider 500-y window width. As described in the main text, peaks were not more likely to occur at 12.9 than at 11.7 ka in either case.

Analysis of Individual Charcoal and Pollen Records. Charcoal concentration data (particles cm2) were converted to influx values (particles cm2 y21) by dividing charcoal values by sample deposition times (y cm2). For the low-resolution records (>50 y sample21), we used quantile regression to estimate background charcoal influx values as the 50th percentile (4). The degrees of freedom parameter (df) was 10 for all but 3 records (i.e., 73 for East Lake, 50 for Sharkey Lake, and 6 for Walker Lake).

In continuously sampled (high-resolution), macroscopic (typically >100 μm) charcoal records, large charcoal peaks above background represent individual, local fire events or clusters of events (fire episodes) as has been demonstrated by examination of the portions of the sedimentary records that overlap with dendrochronological or historical records of fire (5, 6). Lower-resolution records based on microscopic charcoal (<100 μm), reflects burning at broader scales (7). Low-resolution records will integrate individual fire episodes, but increased fire activity can still be inferred from large peaks in low-resolution records (8). For Fig. 2 in the main text, any increase in charcoal influx above background within a defined time period (i.e., either Δy or Δy250 y) was considered a peak.

The high-resolution (<50 y per sample) charcoal influx series were decomposed into background and peaks components using CharAnalysis (9), which allows us to reconstruct peak frequencies and to quantify peak sizes in addition to separating peaks from background charcoal levels (Fig. S3). Charcoal values were interpolated to constant time intervals based on the median resolution at each site. A robust loess smoother was used to define background trends with a 500-y window width for all but 2 records (sites 18 and 13), which showed an improved signal-to-noise ratio with larger window widths (18). Site 18 was smoothed with a 600-y window and site 13 was smoothed with an 800-y window. Peaks were identified by calculating the residuals above a locally defined threshold. The peaks component was defined as the residuals after subtracting background values from the interpolated series, and charcoal peaks were identified by calculating a locally defined threshold value separating fire-related and non-fire-related variations in the peaks component (9). Only peaks that had a maximum charcoal count with a <5% chance of coming from the same Poisson distribution as minimum charcoal counts within the previous 75 y were considered, except for site 13, 20, and 24, where all peaks were counted due to the lack of the sample volume information required to perform the minimum count test (9, 10). Peak magnitudes were obtained by calculating the positive deviations above the background. Ratios of arboreal to nonarboreal pollen percentages (AP/NAP) were obtained by dividing the sum of arboreal and shrub pollen percentages (AP) by the sum of the total terrestrial pollen percentage [AP/(AP + NAP)]. Changes in AP were used as an indicator of major changes in woody fuel levels, not as a tool for reconstructing detailed changes in vegetation community composition, which is beyond the scope of this article.

Trends in Charcoal Influx, Peak Frequency, and Arboreal Pollen. The estimation of trends in noisy data like the charcoal influx data involves a tradeoff between (i) fitting a relatively simple model, like a straight line or polynomial, which allows assessment of the significance of the trend to be made (11) and (ii) using a more flexible or “data-adaptive” model which may better represent more complicated or nonlinear forms of a trend, but which makes it harder to establish the overall significance of the trend (12). We use 2 approaches here: (i) a piecewise linear or segmented-regression model, which allows some flexibility in the fitted model, in particular changes in slope and intercept at some (possibly unknown) breakpoints, and (ii) a local regression or “lowess” approach, which makes no assumptions about the form of the overall trend.

The charcoal influx data were first transformed using the Box–Cox transformation to stabilize the variance of the data as described in Power et al. (13). The transformed values were converted to Z scores by subtracting the mean value and dividing by the standard deviation using a base period of 15–10 ka to allow comparisons among the records that feature widely varying average charcoal influx rates.

We used the “segmented” package (14) from the R-Project (15) to fit an overall linear trend to the charcoal influx data, allowing for changes in the slope and intercept of the trend line at several breakpoints, which were simultaneously estimated with the trend. There is a tradeoff between the number of breakpoints (and the length of the intervals they define) and the interpretability and robustness of the results. Too few breakpoints may lead to a less-good fit to the data, and greater heterogeneity of the intervals or episodes that are defined, whereas too many breakpoints lead to more complicated ad hoc interpretations of the results and to greater sensitivity of the results to the specific data being analyzed. We explored linear and polynomial (2nd- and 3rd-order) trends, and 2–4 break-
points, with starting values for the breakpoints at even 1,000-y intervals from 11,000 to 14,000 y BP.

The best-fitting model with the fewest parameters was a segmented straight-line model with breakpoints at 12,820 y BP (SE = 128.0 y) and 11,550 y BP (SE = 162.3 y). Because these breakpoint ages are indistinguishable from the beginning and end of the YDC (12,875 y BP and 11,660 y BP, respectively), we refit this model using the latter values as breakpoints using ordinary least squares “dummy variable” regression. This model is:

\[\text{Influx} = 5.241697 - 0.000452 \cdot \text{Age} \quad \text{Age < 11,660 y BP} \\
\quad [0.569100] [0.000053] \\
= -0.797223 + 0.000071 \cdot \text{Age} \quad \text{Age (11,600–12,875 y BP)} \\
\quad [1.034000] [0.000084] \\
= 6.610190 - 0.000512 \cdot \text{Age} \quad \text{Age (12,875 y BP)} \\
\quad [0.625200] [0.000045]. \]

where the values in square brackets are the standard errors of the regression coefficients, and \(F = 137 \) \((P < 2.2 \times 10^{-10})\), \(R^2 = 0.1647 \). Note that the slopes of the line segments before \((-0.000452\) and after \((-0.000512\) the YDC are virtually identical, but fitting a model that constrains them to be so adds little to the efficiency of the model. Note also that the slope of the line segments during the YDC is not significantly different from zero. This model yields the straight-line segments on Fig. 1C, and demonstrates the statistical significance of the overall trend in charcoal influx during the LGIT.

A local-regression or lowess curve (16) was also fit to the data to show the long-term trends unconstrained by the specification of a particular model of the trend. The lowess curve-fitting procedure used the tricube weight function with a fixed-width window of 200 y (100-y half-width) as opposed to a variable-width window that “spans” a fixed proportion of the data points. Fitted values were obtained at “target points” spaced 10 y apart. (Note that this interval is not an expression of our belief in the chronological precision of the data, but simply allows us to graph the fitted values in a reasonable way.) A robustness iteration was used to minimize the influence of unusual points or outliers. We also calculated bootstrap confidence intervals for the lowess curve (1,000 replications) where the sampling-with-replacement was done by sites as opposed to individual samples, to assess the impact of the inclusion or exclusion of specific sites in our dataset. The lowess fitted values appear as the smooth curve in Fig. 1C, and the 5th and 95th percentiles of the bootstrapped fitted values define the shaded bands. Note that the segmented-regression trend model and the lowess curve describe the same general trend in charcoal influx during the LGIT.

The density of charcoal peaks in the high-resolution charcoal records (Fig. 1D) was displayed by using a kernel density-estimator (17). We selected a bandwidth of 100 y, which provides a compromise between oversmoothing the peak frequencies while still displaying local maxima in peak frequencies that are supported by peaks in multiple individual records. Bootstrap confidence intervals were obtained in the same way as for the influx data.

AP proportions were transformed using the “angular” or arcsine transformation, and a composite curve (Fig. 1E) was constructed by smoothing the transformed data in a similar fashion as the charcoal influx data. However, because the temporal resolution of the pollen data are typically less than that of the charcoal data, we used a larger window width (200-y half-width) to smooth these data. Bootstrap confidence intervals were again obtained as for charcoal influx.

The Increase in Charcoal at 13.2 ka. The charcoal increase at 13.2 ka is evident in 14 of the 33 sites recording fires by 13.1 ka (sites 1, 2, 10, 15, 17, 18, 19, 20, 21, 22, 23, 26, 30, and 35; Fig. S2) from 8 different regions. These sites span an elevation range of 8–2,863 m, with 5 sites located above 2,000 m. Similar increases in charcoal influx occurred previously at 3 sites (sites 2, 19, and 21), so the change was unprecedented in only 11 records. Of these 11 records, 13.2 ka marks the beginning of a discrete peak at 7 of them (sites 1, 15, 17, 18, 23, 26, and 30), versus an increase in baseline levels at the remaining 4 sites (sites 10, 20, 22, and 35). Fire frequency also increased to a local maximum at 13.2 ka, after a peak in AP at 13.4 ka (Fig. 2). In contrast, 20 sites show low charcoal influx at 13.2 ka, illustrating that burning was widespread, but not continent-wide at the time.

References:

Fig. S1. Paleofire site locations and responses to environmental changes during the Younger Dryas interval (12.9–11.7 ka) [Dyke AS, Moore A, Robertson L (2003) Deglaciation of North America. Geological Survey of Canada Open File 1547. (Ottawa: Natural Resources Canada.) Available at: www.nrcan.gc.ca.] Site numbers are in parentheses.
Fig. S2. Reconstructions of biomass burned and woody biomass for 35 sites in North America. Charcoal influx (black line) was smoothed (orange line) to indicate trends in biomass burned. Note the log scales for Foy and Slough Creek lakes. The ratio of arboreal pollen (AP) to total terrestrial pollen (green line) indicates abundance of tree taxa on the landscape, a proxy for woody biomass. AP ranged from 0.25 for grassland and herb tundra to 1 for closed forest. Dates based on radiocarbon dating, tephras, or pollen correlations (orange triangles) are also shown. Site numbers follow site names. Records are arranged geographically by region, from northwest to southeast. Vertical blue lines mark the beginning (~12.9 ka) and end (~11.7 ka) of the YD.
Fig. S3. Fire-regime reconstructions, including peak episodes (tic marks), peak frequencies (smooth black line), and positive deviations above background or peak magnitudes from high-resolution North American charcoal records during deglaciation. Orange triangles are radiocarbon or tephra dates. The Younger Dryas interval is shaded blue.
Table S1. Names, identification numbers, sources, locations, elevations, and time spanned by individual records

<table>
<thead>
<tr>
<th>ID</th>
<th>Site name</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Elevation, m a.s.l.</th>
<th>Age range (cal yr BP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ruppert Lake, AK (1)</td>
<td>67.07</td>
<td>-154.23</td>
<td>230</td>
<td>13,078–10,000</td>
</tr>
<tr>
<td>2</td>
<td>Xindi Lake, AK (1)</td>
<td>67.11</td>
<td>-152.49</td>
<td>240</td>
<td>15,000–10,000</td>
</tr>
<tr>
<td>3</td>
<td>Lost Lake, AK (2)</td>
<td>64.30</td>
<td>-146.69</td>
<td>240</td>
<td>14,650–10,000</td>
</tr>
<tr>
<td>4</td>
<td>Whyac Lake, BC (3)</td>
<td>48.67</td>
<td>-124.84</td>
<td>15</td>
<td>15,000–10,000</td>
</tr>
<tr>
<td>5</td>
<td>Pixie Lake, BC (3)</td>
<td>48.60</td>
<td>-124.20</td>
<td>70</td>
<td>15,000–10,000</td>
</tr>
<tr>
<td>6</td>
<td>Boomerang Lake, BC (4)</td>
<td>49.18</td>
<td>-124.15</td>
<td>360</td>
<td>13,422–10,000</td>
</tr>
<tr>
<td>7</td>
<td>Enos Lake, BC (4)</td>
<td>49.28</td>
<td>-124.15</td>
<td>50</td>
<td>15,000–10,000</td>
</tr>
<tr>
<td>8</td>
<td>Walker Lake, BC (5)</td>
<td>48.53</td>
<td>-124.00</td>
<td>950</td>
<td>15,000–10,000</td>
</tr>
<tr>
<td>9</td>
<td>Porphyry Lake, BC (5)</td>
<td>48.91</td>
<td>-123.83</td>
<td>1100</td>
<td>14,979–10,000</td>
</tr>
<tr>
<td>10</td>
<td>East Sooke Fen, BC (3)</td>
<td>48.35</td>
<td>-123.68</td>
<td>155</td>
<td>13,685–10,000</td>
</tr>
<tr>
<td>11</td>
<td>Battle Ground Lake, WA (6)</td>
<td>45.80</td>
<td>-122.49</td>
<td>154</td>
<td>14,290–10,000</td>
</tr>
<tr>
<td>12</td>
<td>Little Lake, OR*</td>
<td>44.17</td>
<td>-123.58</td>
<td>210</td>
<td>15,000–10,000</td>
</tr>
<tr>
<td>13</td>
<td>Bolan Lake, OR (7)</td>
<td>42.02</td>
<td>-123.46</td>
<td>1637</td>
<td>14,545–10,000</td>
</tr>
<tr>
<td>14</td>
<td>Bluff Lake, CA (8)</td>
<td>41.35</td>
<td>-122.56</td>
<td>1921</td>
<td>15,000–11,065</td>
</tr>
<tr>
<td>15</td>
<td>Mumbo Lake, CA (9)</td>
<td>41.19</td>
<td>-122.51</td>
<td>1860</td>
<td>15,000–10,000</td>
</tr>
<tr>
<td>16</td>
<td>Dead Horse Lake, CA (10)</td>
<td>42.56</td>
<td>-120.78</td>
<td>2248</td>
<td>15,000–10,000</td>
</tr>
<tr>
<td>17</td>
<td>Swamp Lake, CA (11)</td>
<td>37.95</td>
<td>-119.82</td>
<td>1554</td>
<td>15,000–10,000</td>
</tr>
<tr>
<td>18</td>
<td>Siesta Lake, CA (12)</td>
<td>37.85</td>
<td>-119.67</td>
<td>2430</td>
<td>13,241–10,000</td>
</tr>
<tr>
<td>19</td>
<td>East Lake, CA (13)</td>
<td>37.18</td>
<td>-119.03</td>
<td>2863</td>
<td>14,634–10,000</td>
</tr>
<tr>
<td>20</td>
<td>Foy Lake, MT (14)</td>
<td>48.17</td>
<td>-114.36</td>
<td>1006</td>
<td>13,134–10,000</td>
</tr>
<tr>
<td>21</td>
<td>Burnt Knob Lake, ID (15)</td>
<td>45.70</td>
<td>-114.99</td>
<td>2250</td>
<td>15,000–10,000</td>
</tr>
<tr>
<td>22</td>
<td>Baker Lake, ID (15)</td>
<td>45.89</td>
<td>-114.26</td>
<td>2300</td>
<td>14,328–10,000</td>
</tr>
<tr>
<td>23</td>
<td>Pintlar Lake, MT (15)</td>
<td>45.84</td>
<td>-113.44</td>
<td>1921</td>
<td>14,732–10,000</td>
</tr>
<tr>
<td>24</td>
<td>Slough Creek Lake, WY</td>
<td>44.93</td>
<td>-110.35</td>
<td>1884</td>
<td>13,362–10,000</td>
</tr>
<tr>
<td>25</td>
<td>Cygnet Lake, WY (16)</td>
<td>44.65</td>
<td>-110.60</td>
<td>2530</td>
<td>15,000–10,000</td>
</tr>
<tr>
<td>26</td>
<td>Crane Lake, AZ (17)</td>
<td>36.72</td>
<td>-112.22</td>
<td>2590</td>
<td>13,835–10,000</td>
</tr>
<tr>
<td>27</td>
<td>Hunters Lake, CO (18)</td>
<td>37.61</td>
<td>-106.84</td>
<td>3516</td>
<td>14,273–10,000</td>
</tr>
<tr>
<td>28</td>
<td>Como Lake, CO (17)</td>
<td>37.55</td>
<td>-105.50</td>
<td>3523</td>
<td>13,602–10,000</td>
</tr>
<tr>
<td>29</td>
<td>Chihuahueños Bog, NM (18)</td>
<td>36.05</td>
<td>-106.51</td>
<td>2925</td>
<td>15,000–10,000</td>
</tr>
<tr>
<td>30</td>
<td>Moon Lake, ND (19)</td>
<td>46.86</td>
<td>-98.16</td>
<td>456</td>
<td>13,794–10,000</td>
</tr>
<tr>
<td>31</td>
<td>Sharkey Lake, MN (20)</td>
<td>44.59</td>
<td>-93.41</td>
<td>305</td>
<td>13,037–10,000</td>
</tr>
<tr>
<td>32</td>
<td>Hertel, QC</td>
<td>45.68</td>
<td>-74.05</td>
<td>70</td>
<td>13,000–10,000</td>
</tr>
<tr>
<td>33</td>
<td>Albion, QC (21)</td>
<td>45.67</td>
<td>-71.33</td>
<td>320</td>
<td>13,566–10,000</td>
</tr>
<tr>
<td>34</td>
<td>J’Arrive, QC (21)</td>
<td>49.25</td>
<td>-65.38</td>
<td>56</td>
<td>14,055–10,000</td>
</tr>
<tr>
<td>35</td>
<td>Lake Tulane, FL (22, 23)</td>
<td>27.59</td>
<td>-81.50</td>
<td>35</td>
<td>15,000–10,000</td>
</tr>
</tbody>
</table>

* C.L., unpublished data.
† P.J.H.R., unpublished data.