Difference of means test (t-test)

The significance of differences between a sample mean, and a (perhaps hypothetical) “true” mean, or between two sample means, can be assessed using the t-statistic calculated as part of the t-test. The t-statistic may be thought of as a scaled difference between the two means, where the absolute difference between means is rescaled using an estimate of the variability of the means. The reference distribution for the t-statistic is the t-distribution, shape of which varies slightly as a function of sample size for $n < 30$, and strongly resembles the normal distribution in its shape.

The one-sample t-statistic is

$$t = \frac{\bar{X} - \mu}{\sigma_{\bar{X}}}$$

where \bar{X} is the sample mean, μ is the true or hypothetized mean, s is the sample standard deviation, and n is the sample size. The specific t-distribution that serves as the reference distribution for the t-statistic depends on the “degrees of freedom” (df) of the test statistic. For this one-sample test, $df = n - 1$.

The two-sample t-statistic is

$$t = \frac{\bar{X}_1 - \bar{X}_2}{\sigma_{\bar{X}_1-\bar{X}_2}}$$

Where \bar{X}_1 and \bar{X}_2 are the means of the two samples, and $\sigma_{\bar{X}_1-\bar{X}_2}$ is a measure of the variability of the differences between the sample means. When the population variances are assumed to be equal, a pooled variance estimate is calculated as the weighted average (by sample size) of the two sample variances

$$\sigma_{pooled}^2 = \frac{s_1^2(n_1 - 1) + s_2^2(n_2 - 1)}{n_1 + n_2 - 2}$$

and then

$$\sigma_{\bar{X}_1-\bar{X}_2} = (\sigma_{pooled}^2)^{0.5}((1/n_1) + (1/n_2))^{0.5}.$$

The degrees of freedom that define the specific t-distribution for this straightforward
case is given by
\[df = n_1 + n_2 - 2. \]

If the population variances are not assumed to be equal, the separate sample variances are used as an estimate of \(\sigma_{\bar{X}_1 - \bar{X}_2} \):
\[\sigma_{\bar{X}_1 - \bar{X}_2} = ((s_1^2 / n_1) + (s_2^2 / n_2))^{0.5}. \]

In this more complicated case, the degrees of freedom is given by
\[df = \frac{(s_1^2 / n_1) + (s_2^2 / n_2)}{\left[\frac{s_1^2 / n_1}{n_1 - 1} + \frac{s_2^2 / n_2}{n_2 - 1} \right]}. \]